Numerical Study of Transient Laminar Natural Convection Cooling of high Prandtl Number Fluids in a Cubical Cavity: Influence of the Prandtl Number

نویسندگان

  • O. Younis
  • J. Pallares
  • F. X. Grau
چکیده

This paper presents and discusses the numerical simulations of transient laminar natural convection cooling of high Prandtl number fluids in cubical cavities, in which the six walls of the cavity are subjected to a step change in temperature. The effect of the fluid Prandtl number on the heat transfer coefficient is studied for three different fluids (Golden Syrup, Glycerin and Glycerin-water solution 50%). The simulations are performed at two different Rayleigh numbers (5 ·10 and 5 ·10) and six different Prandtl numbers (3 · 10 ≥Pr≥ 50). Heat conduction through the cavity glass walls is also considered. The propsed correlations of the averaged heat transfer coefficient (Nu) showed that it is dependant on the initial Ra and almost independent on Pr. The instantaneous flow patterns, temperature contours and time evolution of volume averaged temperature and heat transfer coefficient are presented and analyzed. Keywords— Transient natural convection, High Prandtl number, Variable viscosity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation

The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...

متن کامل

A Characteristic-based Solution of Forced and Free Convection in Closed Domains with Emphasis on Various Fluids

In this paper, forced and free convection in the cavity is simulated numerically with complex boundary conditions. Temperature changes sinusoidally at the upper and right walls and the temperature of the other walls is kept at zero. The effects of Prandtl and Grashof numbers variations on flow patterns are surveyed. A wide range of materials, e.g. molten metals, gases, water, and coolant liquid...

متن کامل

Natural Convection at Different Prandtl Numbers in Rectangular Cavities with a Fin on the Cold Wall

The natural convection in differentially heated rectangular cavities with a fin attached to the cold wall was investigated numerically. The top and the bottom horizontal walls of the cavities were insulated while their left and the right vertical walls were maintained at a constant temperature Th and Tc, respectively with Th > Tc. The governing equations written in terms of the primitive variab...

متن کامل

Numerical investigation of natural convection phenomena in uniformly heated trapezoidal Cylinder inside an elliptical Enclosure

A numerical study of the natural convection of the laminar heat transfers in the stationary state was developed in a horizontal ring and compared between a heated trapezoidal internal cylinder and a cold elliptical outer cylinder. This annular space is traversed by a Newtonian and incompressible fluid. The Prandtl number is set to 0.7 (air case) for different Rayleigh numbers. The system of equ...

متن کامل

Finite Volume Simulation of Natural Convection in a Trapezoidal Cavity Filled with Various Fluids and Heated from the Top Wall

Laminar natural convection in a trapezoidal cavity filled with various fluids is studied numerically using a finite volume method. The cavity inclined left and right sidewalls are maintained at constant cold temperature while the top wall is maintained at constant hot temperature. The bottom wall is considered adiabatic. Fluid flow fields , isotherm patterns and the average Nusselt number are p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009